If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+50x+8=0
a = 12; b = 50; c = +8;
Δ = b2-4ac
Δ = 502-4·12·8
Δ = 2116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2116}=46$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-46}{2*12}=\frac{-96}{24} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+46}{2*12}=\frac{-4}{24} =-1/6 $
| 4x=2x+23x+6 | | -5+3x=1+3x-6 | | -3.5x^2+18x-46=0 | | x+5=5+2x-11 | | x+2/3=2-2/3 | | 20~=2~r | | k/2-7=-3 | | 56+7x=9(8x-7)-11 | | 8x^2-51x-35=0 | | 30=-6(7x-1)+8(3-2x) | | 6x+7-4x=11-2x | | 73x+400=25 | | -14=-2(2x+12) | | 2x^2+8x+-2=0 | | 13x^2+21x=5-6x | | 3x+6x+2=5x+22 | | x=1=4954 | | 57=7p | | 5/x+8=12 | | 2(r/5)=-2 | | 0.66(6j+9)=3j+7 | | (3+2i)+(5-3i)=0 | | -4(7x-5)=-28x-20 | | 5x/x+8=12 | | (4x-20)(x-7)=0 | | 7x-12x=-5x | | X-10x=119 | | 17=9-3-3p | | k-7/5=1 | | 3(4x-12)=-12x-6 | | 12y-7+5y=0 | | 5n+2(4n-5)=29 |